Example 2.1.8 Consider \mathbb{Z} , the set of integers. Let a be a fixed integer. Let

$$G = \{ na \mid n \in \mathbb{Z} \}.$$

That is, G consists of all multiples of a. Note that $G \subseteq \mathbb{Z}$.

Now $0 = 0a \in G$. So it follows that G is nonempty. Because + is commutative and associative on \mathbb{Z} and G is a subset of \mathbb{Z} , it follows that + is commutative and associative on G. Moreover, note that 0 is the identity element of G. Also for each $na \in G$, $-(na) = (-n)a \in G$ and

$$na + (-(na)) = 0 = (-(na)) + na.$$

We can now conclude that (G, +) is a commutative group.

Let n be a fixed positive integer, Chapter 1 extensively describes the set \mathbb{Z}_n and the binary relation \equiv_n on \mathbb{Z}_n . The next example shows that \mathbb{Z}_n together with the binary relation $+_n$, as defined in that example, is a commutative group. The next two examples are, in fact, due to Gauss's, whose work yielded many new directions of research in Abelian groups.

Example 2.1.11 Let

$$\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$$

Note that $\mathbb{Q}[\sqrt{2}] \subseteq \mathbb{R}$. Now $0 = 0 + 0\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$. This shows that $\mathbb{Q}[\sqrt{2}] \neq \emptyset$. Define + on $\mathbb{Q}[\sqrt{2}]$ as follows: for all $a + b\sqrt{2}$, $c + d\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$,

$$(a+b\sqrt{2}) + (c+d\sqrt{2}) = (a+b) + (c+d)\sqrt{2}$$
.

It is easy to see that + is a binary operation on $\mathbb{Q}[\sqrt{2}]$. Note that + is the usual addition. Because $\mathbb{Q}[\sqrt{2}] \subseteq \mathbb{R}$, it follows that + is associative and commutative on $\mathbb{Q}[\sqrt{2}]$. Next, for all $a + b\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$,

$$(a+b\sqrt{2})+(0+0\sqrt{2})=a+b\sqrt{2}=(0+0\sqrt{2})+(a+b\sqrt{2}).$$

Thus, $0 = 0 + 0\sqrt{2}$ is the identity element of $(\mathbb{Q}[\sqrt{2}], +)$. Note that the inverse of $a + b\sqrt{2}$ is $-a + (-b)\sqrt{2}$. Hence, $(\mathbb{Q}[\sqrt{2}], +)$ is a commutative groups.

In a similar manner, we can show that $(\mathbb{Q}[\sqrt{2}]\setminus\{0\},\cdot)$ is a commutative group, where \cdot is the usual multiplication. Note that the identity of $(\mathbb{Q}[\sqrt{2}]\setminus\{0\},\cdot)$ is $1=1+0\sqrt{2}$ and the inverse of $a+b\sqrt{2}\neq 0$ is $\frac{a}{a^2-2b^2}-\frac{b}{a^2-2b^2}\sqrt{2}$.